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Agricultural management and plant
selection interactively affect rhizosphere
microbial community structure and
nitrogen cycling
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Abstract

Background: Rhizosphere microbial communities are key regulators of plant performance, yet few studies have
assessed the impact of different management approaches on the rhizosphere microbiomes of major crops.
Rhizosphere microbial communities are shaped by interactions between agricultural management and host
selection processes, but studies often consider these factors individually rather than in combination. We tested the
impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence
networks of maize roots collected from long-term conventionally and organically managed maize-tomato
agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere
microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and
microbial nitrogen-cycling processes.

Results: Host selection processes moderate the influence of agricultural management on rhizosphere microbial
communities, although bacteria and fungi respond differently to plant selection and agricultural management. We
found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere,
distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic
systems were more similar in diversity and network structure than communities from their respective bulk soils, and
community composition was affected by both M and R effects. In contrast, fungal community composition was
affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling
genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by
management and was higher in the organic system.

Conclusions: Plant selection interacts with conventional and organic management practices to shape rhizosphere
microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing
research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant
moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity
and agroecosystem sustainability.

Keywords: Rhizosphere, Agricultural management, Soil microbial community, Nitrogen cycling, Quantitative PCR,
Agroecosystem, Adaptive feedbacks
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Background
Soil microbial communities are shaped by diverse, inter-
acting forces. In agroecosystems, management practices
such as crop rotation, fertilization, and tillage alter soil
physicochemical parameters, influencing the diversity
and composition of bulk soil bacterial and fungal com-
munities [1]. Plant roots create additional complexity,
establishing resource-rich hotspots with distinct proper-
ties from the bulk soil and selectively recruiting micro-
bial communities in the rhizosphere [2, 3]. Root uptake
of ions and water coupled with exudation of carbon-rich
compounds results in a rhizosphere soil compartment
where microbial cycling of nitrogen, phosphorous, and
other nutrients is rapid, dynamic, and competitive in
comparison to the bulk soil. Although impacts of agri-
cultural management and the rhizosphere environment
on microbiomes and their ecological outcomes have fre-
quently been analyzed separately, understanding interac-
tions has important implications for assembly, ecology,
and functioning of rhizosphere microbial communities
which are critical to plant health and productivity [4].
Agricultural management establishes soil physico-

chemical properties that influence microbial community
composition, structure, and nutrient-cycling functions.
Organic fertilizer increases bulk soil microbial diversity
and heterogeneity [5], and organically managed systems
differ from conventional systems in bacterial and fungal
community composition [1, 6–8]. Co-occurrence net-
work analysis has shown that these taxonomic shifts can
shape patterns of ecological interactions regulating
structure, function, and potential resilience of soil mi-
crobial communities [9–12]. In fact, nutrient manage-
ment strategies are strong drivers of co-occurrence
network structural properties, although outcomes across
regions and agroecosystems are inconsistent and also a
function of other environmental and management
factors [13–15].
Plant roots are similarly powerful drivers of microbial

community assembly, creating rhizosphere communities
that are taxonomically and functionally distinct from
bulk soil [16]. The strength of plant selection, or rhizo-
sphere effect, is evident in observations of core micro-
biomes across different field environments [17, 18]. As
for management, plant effects on microbial communities
also extend beyond taxonomy to network structure.
Rhizosphere networks have frequently been found to be
smaller, less densely connected, and less complex than
bulk soil networks [3, 19–21], although counterexamples
exist [22]. Whether plasticity in rhizosphere recruitment
can occur across management gradients and how such
plasticity could impact plant adaptation to varying re-
source availabilities in agroecosystems remains unclear.
The potential for adaptive plant-microbe feedbacks is

especially relevant for acquisition of nitrogen (N), an

essential nutrient whose availability in agroecosystems is
controlled by interactions between fertility management
practices and microbial metabolic processes. Microbial
communities supply plant-available N through biological
N fixation and mineralization of organic forms, and limit
N losses by immobilizing it in soil organic matter. Con-
ventional and organic agroecosystems establish unique
contexts in which these transformations occur, shaping
microbial communities through system-specific differ-
ences in soil N availability and dominant N forms [23–26]
as well as quantity and quality of soil organic matter [27].
Organic fertility inputs such as compost and cover crop
residues alter the abundance, diversity, and activity of vari-
ous nitrogen-cycling microorganisms [7, 28–30], while
synthetic fertilizers mainly increase the abundance of
Acidobacteria [1] and can decrease the abundance of
ammonia-oxidizing archaea [31]. Synthetic fertilizers may
affect microbial community structure via changes in pH,
increasing the abundance of acid-tolerant taxa indirectly
through soil acidification, or may alter the relative abun-
dance of specific taxa even when pH is relatively constant
[32]. Changes in microbial community structure and ac-
tivity in bulk soil affect not just the rates but also the out-
comes of agriculturally and environmentally relevant N-
cycling processes such as denitrification [27]. Roots are
also key regulators of N transformations, leading to higher
rates of N cycling that are more closely coupled to plant
demand in the rhizosphere than in bulk soil compart-
ments [33]. The maize rhizosphere harbors a distinct de-
nitrifier community [34] and is enriched in functional
genes related to nitrogen fixation (nifH), ammonification
(gdh, ureC), nitrification (amoA, hao), and denitrification
(narG, nirS/nirK, norB, nosZ) relative to soil beyond the
influence of roots [35–37]. Understanding regulation of
tight coupling of rhizosphere N cycling processes to plant
demand [38] could provide new avenues for more efficient
and sustainable N management, particularly in an era of
global change [39].
However, it is necessary to go beyond exploration of in-

dividual effects of plant selection and agricultural manage-
ment on rhizosphere microbial communities and consider
how these factors interact. This knowledge can contribute
to managing rhizosphere interactions that promote both
plant productivity and agroecosystem sustainability. While
management-induced shifts in bulk soil microbiomes
affect environmental outcomes, plant-regulated rhizo-
sphere communities are more directly relevant to yield
outcomes. Improved understanding of how plant selection
changes across management systems is thus an essential
component of sustainable intensification strategies that
decouple agroecosystem productivity from environmental
footprints, particularly in organic systems where yields are
formed through transformation of natural resources rather
than transformation of external synthetic inputs [40].
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When management (M) and plant rhizosphere (R) ef-
fects shape rhizosphere microbial communities, a num-
ber of scenarios are possible: one could be greater than
the other (M > R or R >M), their effects could be addi-
tive (M + R), or they could interact (M × R) (Fig. 1). Typ-
ically, these effects are considered additive (M + R),
where management shapes bulk soil communities and
plant effects act consistently, such that rhizosphere com-
munities are distinct from bulk soil and differ from one
another to the same degree as their respective bulk soil
communities. However, variation in rhizosphere micro-
biomes [30, 41–43] and co-occurrence networks [43] be-
tween management systems and the unique responses of
bulk soil and rhizosphere bacteria to cropping systems
[44] point toward M × R interactions shaping microbial
community composition. Nonetheless, the functional
significance of these interactive effects on critical func-
tions such as N cycling is complex and remains difficult

to predict. For example, biological N fixation is driven in
large part by plant demand, but high inputs of synthetic
fertilizer reduce rates of biological N fixation, diminish-
ing the role of soil microbial communities in supplying
plant nutrients and increasing the potential for reactive
N losses [45]. Understanding how the M × R interaction
affects ecological functions is thus a knowledge gap of
critical agricultural and environmental relevance.
Adaptive plant-microbe feedbacks in the rhizosphere

have been described for natural ecosystems [46], but
whether this can occur in intensively managed agricul-
tural systems where resources are more abundant is less
clear [47]. We asked whether adaptation to contrasting
management systems shifts the magnitude or direction
of the rhizosphere effect on rhizosphere community
composition and/or N-cycling functions across systems.
For instance, can the same genotype selectively enrich
adaptive functions that increase N mineralization from

Fig. 1 Potential relationships between management and rhizosphere effects. Conceptual framework of scenarios for management (M) and
rhizosphere (R) effects on microbiomes. a M effects could be stronger than R, leading to stronger differences between microbial communities in
different systems than between bulk soil and rhizosphere communities. b Conversely, R effects could be stronger than M, leading to distinct bulk
and rhizosphere communities across management systems. c If M and R effects are additive, plant effects act consistently on distinct bulk soil
pools. Rhizosphere communities thus differ from bulk soil and differ from one another by the same amount as their respective bulk soil
communities do. d An M × R interaction is present, and the magnitude or direction of the rhizosphere effect could differ between systems. In
addition, differences between rhizosphere communities could be greater than differences between bulk soil communities
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cover crops and compost when planted in an organic system
and also reduce denitrification loss pathways from inorganic
fertilizer when planted in a conventional system? We hy-
pothesized that (a) an M×R interaction would result in dif-
ferences in the magnitude or direction of the rhizosphere
effect on microbial community structure and functions and
that (b) differences between rhizosphere communities, co-
occurrence network structure, or N-cycling processes would
reflect adaptive management-system-specific shifts. To test
these hypotheses, we investigated microbial community
composition and co-occurrence patterns in bulk and rhizo-
sphere samples from a single maize genotype grown in a
long-term conventional-organic field trial. We further quan-
tified the abundance of six microbial N-cycling genes as case
study for M×R impacts on rhizosphere processes of
agricultural relevance. Our approach integrated ordination,
differential abundance and indicator species analyses, con-
struction of co-occurrence networks, and quantitative PCR
of N-cycling genes to gain a deeper understanding of the
factors that shape rhizosphere community and ecological
interactions.

Results
Microbial diversity
We observed significant rhizosphere effects on the alpha
diversity of bacterial and archaeal communities (n = 36)
at the ASV level (Additional file 8: Figure S1). At this
taxonomic level, bulk soil bacterial/archaeal communi-
ties were significantly more diverse under organic man-
agement than conventional management (p < 0.05).
However, rhizosphere bacterial/archaeal communities
were equally diverse in both systems, with diversity
intermediate to that of the two bulk soils. Thus, the dir-
ection of the rhizosphere effect differed between sys-
tems. For diversity and indicator species, the direction of
the rhizosphere effect reflects the increase/decrease in
the parameter of interest in the rhizosphere relative to
bulk soil. For community composition, the direction of
the rhizosphere effect was based on visualization of the
vector from the bulk soil community to the rhizosphere
community in multivariate ordination. While plants
acted as a selective filter to decrease diversity in the
rhizosphere of organically grown plants, rhizosphere
bacterial/archaeal diversity was enriched in the conven-
tional system compared to bulk soil (M × R p < 0.001,
Additional file 8: Figure S1a). Fungal diversity did not
differ between rhizosphere and bulk soil samples or be-
tween management systems at the ASV level (n = 36,
p > 0.05, Additional file 8: Figure S1b).

Microbial community composition
NMDS ordination based on Bray-Curtis distances showed
that bacterial and archaeal communities were distinct be-
tween management systems and soil compartments (bulk

soil or rhizosphere) at the ASV level (Fig. 2a) and all four
ANOSIM pairwise comparisons were significantly differ-
ent (p < 0.01, Additional file 3: Table S2). We observed a
significant M × R interaction (p < 0.05), showing that the
strength of plant influence on bacterial recruitment dif-
fered between management systems. We found greater
differences between bulk and rhizosphere communities at
the ASV level in conventional soils compared to organic
(Fig. 2a, Additional file 3: Table S2).
Genus-level relative abundance data showed that

Bacillus tended to be the most abundant bacterial genus,
especially in CB and OR samples (Additional file 9:
Figure S2a). Skermanella and Steroidobacter were also
relatively common in most samples. Few differences be-
tween management systems were observed at this taxo-
nomic level, but plant selection appeared to reduce the
abundance of Pseudarthrobacter in the rhizosphere in
both systems and increase the abundance of the genera
RB41 and Acidibacter.
Management but not soil compartment significantly

distinguished fungal communities as shown with NMDS
ordination (Fig. 2b, PERMANOVA p = 0.001). ANOSIM
pairwise comparisons supported this conclusion using a
Bonferroni-adjusted p value of 0.0125, although the soil
compartment effect in the organic system was significant at
the p = 0.05 level (p = 0.04, Additional file 3: Table S2). The
genera Mortierella and Cryptococcus were most abundant
across all samples (Additional file 9: Figure S2b). Cystofilo-
basidium tended to be more abundant in the organic
system, whereas members of the genera Rhizopus and
Minimedusa tended to be more abundant in the conven-
tional system. The genera Articulospora and Aspergillus
appeared to respond to plant selection, with Articulospora
more abundant in bulk soil and Aspergillus more abundant
in the rhizosphere.

Differentially abundant ASVs
Variation in community composition was investigated at
greater taxonomic resolution by identifying ASVs whose
abundance differed in response to management, rhizo-
sphere effects, or their interaction (Figs. 3and 4). The
greatest number of differentially abundant ASVs was ob-
served between the organic and conventional bulk soil
environments, with 14 bacterial and 30 fungal ASVs,
highlighting the strong impact of management on com-
munity composition (p < 0.01, Figs. 3 and 4). Twelve of
the 14 bacterial ASVs were more abundant in the or-
ganic system (OB), while two ASVs belonging to the or-
ders Cytophagales and Solirubrobacterales were more
abundant in conventional bulk soil (CB) (Fig. 3a). The
30 differentially abundant fungal ASVs were taxonomic-
ally diverse and 21 of 30 were more abundant in the
organic system (Fig. 4a).
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A greater number of ASVs showed a significant re-
sponse to plant selection in conventional (CB-CR) than
organic soil (OB-OR) (Fig. 3b, c and Fig. 4b, c). Five bac-
terial and five fungal ASVs were differentially abundant
between the conventional bulk and rhizosphere soils
(Figs. 3b and 4b), as compared to one bacterial and two
fungal ASVs in the organic bulk and rhizosphere soils
(Figs. 3c and 4c).
The number of differentially abundant taxa between

the rhizosphere communities of the two systems (CR-
OR) was at least as great as the number responding to
within-system rhizosphere effects (Fig. 3b–d and
Fig. 4b–d). More fungal than bacterial ASVs were differ-
entially abundant between these rhizosphere communi-
ties: 24 fungal ASVs but only six bacterial ASVs were
significantly different in abundance between CR and OR,
indicating strong M × R interactions. The differentially
abundant fungi and bacteria were evenly distributed be-
tween the two management systems. For fungi, 11 ASVs
were more abundant in the rhizosphere of conventional
plants and 13 were more abundant in organic. The Mor-
tierellales were the most-represented order with four
ASVs, but these were not disproportionately found in
CR or OR (Additional file 9: Figure S2b).

Indicator ASVs
A total of 74 bacterial/archaeal ASVs were identified as in-
dicator taxa, with 27 of those specific to one environment
(management system-soil compartment combination) and
47 to a combination of two environments (Additional file 10:
Figure S3a, Additional file 4: Table S3). Management effects
were stronger than soil compartment effects and more bac-
terial ASVs were management-system-specific (10 to con-
ventional, 21 to organic) than soil-compartment-specific (5
to rhizosphere, 11 to bulk). We observed a significant M×
R interaction in recruitment of unique taxa: more ASVs
were unique indicators of the conventional rhizosphere
communities (11 to CR vs. 5 to CB) while the opposite was

true under organic management (2 to OR vs. 9 to OB). Bac-
terial/archaeal indicators were widely distributed phylogen-
etically (Additional file 4: Table S3).
Forty-nine fungal indicator ASVs were identified: 16 cor-

responding to one management system-soil compartment
environment and 33 to two environments (Additional file 10:
Figure S3b, Additional file 5: Table S4). Similar to bacterial/
archaeal communities, management system had a stronger
influence than the rhizosphere on indicator taxa: 12 fungal
indicator ASVs were specific to conventional management,
18 to organic management, and only three to the rhizo-
sphere and none to bulk soil.
An M × R interaction was also observed in which more

fungal indicators were specific to the rhizosphere in the
conventional system (9 to CR vs. 2 to CB) than in the
organic system (1 to OR vs. 4 to OB).

Network analysis
Bacterial/archaeal networks from conventionally man-
aged soil compartments were more densely connected
than the respective networks from organically managed
soil compartments, with more edges and higher density
despite the same number of nodes (Fig. 5a, Table 1).
The bacterial/archaeal network in the conventional

bulk soil (CB) was the most densely connected, with
nearly 703 more edges than the next-largest network
(CR). The bacterial networks were low in density, ran-
ging from 0.037 for OB to 0.067 for CB, and all four net-
works had significant modularity, with values for the
modularity index (range − 0.5 ≤Q ≤ 1) from 0.44 for CB
to 0.66 for OB. Significant M × R effects on bacterial
communities were reflected in network structure: while
the rhizosphere network was smaller, less connected,
less dense, and less centralized than the bulk soil net-
work in the conventional system, opposite trends were
observed for the organic system.
The impact of management on fungal networks was

less clear than for bacteria/archaea (Fig. 5b, Table 1).

Fig. 2 NMDS ordination of bacterial and fungal communities. a Bacterial communities separated by management and soil compartment
(PERMANOVA p < 0.05). b Fungal communities responded to management effects but not plant influence (PERMANOVA p = 0.001). All ordinations
were performed using ASV-level data
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The fungal network of the organic system bulk soil was
largest with 144 nodes and 669 edges and had the high-
est mean degree and density. Density was low (0.034–
0.065), and modularity values ranged from 0.39 for OB
to 0.77 for OR. We observed significant rhizosphere ef-
fects as fungal rhizosphere networks were smaller, less
connected, less dense, less centralized, and more modu-
lar than the corresponding bulk soil networks. No M × R
interaction was observed in fungal networks.

Fig. 3 Differentially abundant bacterial ASVs. Bacterial ASVs were
identified whose abundance was affected by a) management (M), b-
c) the rhizosphere effect (R), or d) the M × R interaction. More
bacterial ASVs differed in abundance due to management than in
response to the rhizosphere effect or M × R interaction. “Unknown”
indicates that the ASV was not identified at the order level. Sample
names on the x-axis indicate the combination of management
system (C conventional, O organic), soil compartment (B bulk, R
rhizosphere), and replicate (plot 1 = samples 1–3, plot 2 = samples 4–
6, plot 3 = samples 7–9). Only ASVs that differed significantly among
treatments at the α = 0.0125 level are shown

Fig. 4 Differentially abundant fungal ASVs. Fungal ASVs were
identified whose abundance was affected by a) management (M), b-
c) the rhizosphere effect (R), or d) the M × R interaction. The M × R
interaction was strong in fungal communities, as shown by the high
number of ASVs differing in abundance between the CR and OR
environments. “Unknown” indicates that the ASV was not identified
at the order level. Sample names on the x-axis indicate the
combination of management system (C conventional, O organic),
soil compartment (B bulk, R rhizosphere), and replicate (plot 1 =
samples 1–3, plot 2 = samples 4–6, plot 3 = samples 7–9). Only ASVs
that differed significantly among treatments at the α = 0.0125 level
are shown
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Fig. 5 Microbial co-occurrence networks. Bacterial and fungal co-occurrence networks constructed from ASV-level data corresponding to each
combination of management system and soil compartment have different structural characteristics. Nodes indicate amplicon sequence variants
(ASVs) and edges represent significant co-occurrence relationships (Spearman’s ρ > 0.75 and p < 0.05). a For bacteria, conventional networks had
more edges but the same number of nodes as compared to organic networks. Furthermore, while the rhizosphere network had fewer edges
than the bulk soil network in the conventional system, the rhizosphere network had more edges than the bulk soil network in the organic
system. b Fungal rhizosphere networks were smaller, less connected, less dense, less centralized, and more modular than the corresponding bulk
soil networks in both systems. Network properties and their ecological relevance are described in more detail in Table 1

Table 1 Relevant properties of co-occurrence networks

Bacterial networks Fungal networks

Category Metric Definition Ecological relevance CB CR OB OR CB CR OB OR

Size Nodes Each node represents a
bacterial/archaeal or fungal
OTU.

Larger networks contain a
greater number of interacting
(co-occurring or co-excluding)
OTUs.

332 335 335 335 139 142 144 144

Size Edges Edges indicate significant co-
occurrence or co-exclusion
relationships.

Co-occurrence could represent a
number of ecological
interactions, from predator-prey
relationships to commensalism
to shared ecological niches [12].
Co-exclusion may represent
competition or inhibition.

3698 2995 2088 2261 616 457 669 349

Degree Mean degree Degree refers to the number
of edges a given node has.
Mean degree is the average
degree across all nodes in a
network [10].

Higher mean degree indicates
more co-occurrence or co-
exclusion relationships per OTU.

22.28 17.88 12.47 13.50 8.86 6.44 9.29 4.85

Cohesion Density Density is defined as the ratio
of the number of edges in a
given network to the number
of edges possible for that
many nodes.

High-density networks contain a
large proportion of interacting
OTUs.

0.067 0.054 0.037 0.040 0.064 0.046 0.065 0.034

Centrality Centralization
index

The degree of organization of
a network around specific
(central) nodes.

High scores indicate that
networks are centralized around
one or a few focal nodes; low
scores indicate decentralized
structure [103].

0.17 0.15 0.11 0.13 0.17 0.10 0.16 0.071

Modularity Modularity
index

Edges belonging to a
module minus those that
would be expected from a
random network with the
same number of edges [104].

High modularity indicates more
structured communities within a
network [104].

0.44 0.49 0.66 0.63 0.45 0.72 0.39 0.77

Number of
modules

Modules are groups of OTUs
that interact more closely
with one another than with
other OTUs.

Can represent overlapping
ecological niches or
phylogenetic groups [19].

14 9 19 13 18 13 16 13
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Hub taxa
Five hubs were identified in each network as the ASVs with
the highest betweenness centrality indices (Additional file 6:
Table S5). Normalized betweenness centrality indices were
generally lower in the organic networks than the corre-
sponding conventional networks.
As the ecological relevance of hub species in co-

occurrence networks has been called into question, par-
ticularly with regard to their potential role as keystone
species [48], we examined whether any of these taxa also
appeared as indicator species. Four bacterial and four fun-
gal hubs were also identified as indicators (Additional file 6:
Table S5, bold). Bacterial hubs that were also indicators
included members of the orders Sphingobacteriales (CB),
Cytophagales (CR), and Rhizobiales (OB), as well as a
member of the phylum Verrucomicrobia not identified to
the order level (CR). Fungal hubs that were also identified
as indicators included members of the orders Tremellales
(CB) and Agaricales (CR), as well as a member of the
phylum Mortierellomycota that was not identified at the
order level and a fungal ASV that could not be identified
even at the phylum level.

Functional N-cycling genes
Multivariate analysis of all six N-cycling genes showed that
samples separated primarily by soil compartment along the
first principal component axis, which explained 69.6% of
variation (Additional file 11: Figure S4a). Slight separation of
samples by management system was also observed along
this axis. PERMANOVA revealed significant effects of man-
agement (p < 0.05) and soil compartment (p < 0.001) but not
the interaction (p > 0.05). This result is consistent with
similar profiles of gene abundances across treatments
(Additional file 11: Figure S4b). Management effects were
detected for abundance of the nosZ gene, involved in de-
nitrification, and the bacterial amoA gene, involved in nitrifi-
cation (p < 0.05, Fig. 6). The abundance of the nosZ gene
was higher in the organic system in both bulk and rhizo-
sphere soils, while the abundance of the amoA gene was
higher in the organic system only in bulk soil. The rhizo-
sphere effect decreased the abundance of all the N-cycling
genes measured as compared to bulk soil (Fig. 6). No M×R
interactions were significant at the p= 0.05 level.

Discussion
We asked how agricultural management and plant roots
act individually and in combination to shape microbial
community composition, co-occurrence patterns, and
N-cycling functions, and whether this interaction leads
to system-specific adaptation. In accordance with known
management and rhizosphere effects on microbial com-
munity structure and N dynamics in agroecosystems, we
observed conventional/organic and bulk/rhizosphere
differences in many of the parameters measured.

Furthermore, many of our analyses supported the hy-
pothesis that plant selective influence varies with man-
agement (an M × R interaction) to shape plant-
associated microbial community composition and struc-
ture (Fig. 1).
Management, rhizosphere, and M × R effects on mi-

crobial communities are likely mediated in large part by
soil physicochemical properties, which differed between
management systems and soil compartments (Add-
itional file 2: Table S1). Strong effects of management
on soil physicochemical properties were visible in the
higher NO3-N, P, K, Ca, Na, and SOM levels in the or-
ganic system and higher Mg and pH in the conventional
system. Rhizosphere soil was depleted in NO3-N, P, and
K in both management systems. M, R, and M × R effects
on soil properties such as nutrient availability, pH, and
organic matter likely contribute greatly to microbial
community assembly in these treatments.
Significant differences in the direction or magnitude of

the rhizosphere effect were observed for bacterial diver-
sity, community composition, and indicator species
(Additional file 8: Figure S1, Additional file 9: Figure S2,
Additional file 10: Figure S3). Plant roots consistently
imposed a strong selective filter, and similarity between
rhizosphere communities (CR-OR) was greater than
similarity between bulk soil communities (CB-OB).
Nevertheless, rhizosphere communities still reflected the
impacts of management on the contributing microbial
pool, and rhizosphere communities were more similar to
their corresponding bulk soil communities (CB-CR, OB-
OR) than to one another (CR-OR).
The direction of the rhizosphere effect varied with

management for bacterial diversity, indicator species,
and community structure. This M × R interaction re-
sulted in rhizosphere bacterial communities that were
more similar in diversity, composition, and structure
than bulk soil bacterial communities. Rhizosphere bac-
terial/archaeal diversity was lower in the organic rhizo-
sphere but higher in the conventional rhizosphere
compared to bulk soil (Additional file 8: Figure S1a). Al-
though roots are often thought to impose a selective fil-
ter that decreases diversity, higher species richness in
the rhizosphere as observed here in the conventional
system has been reported elsewhere when plants select
for enrichment of certain processes [49]. Here, however,
whether functional enrichment is related to selection for
increased diversity is unclear.
Environmental filtering may account for the fact that

bacterial rhizosphere networks were more similar than
bulk soil networks. Although it has been hypothesized
that niche sharing should lead to greater co-occurrence
and thus more densely connected networks in the rhizo-
sphere [50], this effect was seen only in the bacterial or-
ganic networks (Fig. 5, Table 1). Viewed in combination
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with previous work showing smaller, less densely con-
nected networks in rhizosphere soil [3, 19–21], our re-
sults suggest that rhizosphere effects on co-occurrence
networks, like other metrics of microbial community
structure, may well be context- and system-dependent.
The magnitude of plant effects on rhizosphere com-

munities also differed between management systems.
We generally found greater differences between bulk
and rhizosphere community composition in conven-
tional soils compared to organic (Figs. 2, 3, and 4). Hart-
man et al. attribute a similar M × R interaction observed
in their study of wheat agroecosystems to the application
of management practices immediately before root

establishment [44]. This explanation may apply here as
well, specifically with regard to the spatial scale of cover
crop and fertilizer inputs. Inorganic fertilizer (conven-
tional system) and composted poultry manure (organic
system) were trenched in seed beds and therefore near
crop roots, likely favoring divergence of bulk soil and
rhizosphere microbial communities. Since cover crops
were sown throughout the organic plots, cover-
cropping-induced changes in microbial community com-
position were likely similar in the bulk soil and early
root zone, whereas emerging roots in the conventional
plots would likely have encountered a fertilizer-enriched
zone already distinct from most of the bulk soil.

Fig. 6 Quantitative PCR of nitrogen-cycling gene abundances. The abundance of six N-cycling genes involved in nitrogen fixation (nifH),
ammonia oxidation by archaea (archaeal amoA) and bacteria (bacterial amoA), and denitrification (nirK, nirS, nosZ) across samples. The abundance
of all genes was lower in the rhizosphere. Organic management increased the abundance of the nosZ gene in both bulk and rhizosphere
samples and of the bacterial amoA gene in bulk soil. C conventional, O organic, B bulk, R rhizosphere. * indicates a significant difference at the
α = 0.05 level
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We further hypothesized that rhizosphere communi-
ties would be enriched in system-specific beneficial taxa
and functions of importance for plant adaptation to
system-specific soil conditions. Although indicator spe-
cies analysis revealed system-specific taxa, we cannot de-
finitively conclude whether these taxa are beneficial
based on amplicon sequencing data. Three members of
the order Myxococcales (identified as the genera Phaseli-
cystis, Archangium, and Myxococcus) and two members
of the order Burkholderiales (identified as the genera
Rhizobacter and Achromobacter) were indicators of or-
ganic environments, in line with previous studies show-
ing these orders to be organic-system-specific [8, 51]
(Additional file 4: Table S3). Two strains of the Anaero-
lineales, an order that displaces other fermenters under
high-nitrate conditions [52], were indicators of the con-
ventional system.
Broad ecological information about soil fungi is limited

in comparison to bacteria and archaea, despite extensive
specialized literature on pathogens of humans and plants
or AMF and other endophytes [53]. Many fungal indica-
tors identified here belong to genera known to be patho-
genic on other host species, and these were relatively
evenly distributed among environments. The significance
of pathogens as indicator species in these systems is un-
clear, especially for pathogens such as Boeremia exigua,
which causes leaf spot on diverse host crops including
tomato, the other crop in this rotation [54], but is not
known to cause disease in maize. Fewer details of metab-
olism and ecology are available for non-pathogenic fun-
gal indicators. Mortierella, the most common genus
among fungal indicators in this study, are known to be a
large genus of saprotrophs [55]. Exophiala equina and
Didymella sp. have been reported elsewhere to be asso-
ciated with plant roots [56, 57]. Fungi are critical drivers
of C/N cycling [58, 59] and carbon sequestration [60] in
agricultural systems, and linking specific taxa to roles
beyond pathogenic interactions will be a valuable expan-
sion of the existing literature.
With regard to N-cycling functions, we quantified six

genes involved in different steps of the nitrogen cycle, all
of which were affected by plant selection and only two
of which were differentially selected between systems
(Fig. 6). The relative abundance of genes relative to one
another was similar across treatments, suggesting that
no system-specific bottlenecks in the N cycle were ob-
served (Additional file 11: Figure S4b). The abundances
of the nifH, amoA (both archaeal and bacterial), nirK,
nirS, and nosZ genes were higher in the bulk soil, in
contrast to previous studies that found the maize rhizo-
sphere was enriched in functional genes related to nitro-
gen fixation (nifH), nitrification (amoA, hao), and
denitrification (narG, nirS/nirK, norB, nosZ) [35–37].
That effect was also observed with the addition of

artificial maize root exudates [61], suggesting that exu-
dates are the main mechanisms influencing microbial N
cycling independently of other physicochemical charac-
teristics of the rhizosphere. However, mechanisms other
than exudates may be responsible for the discrepancy in
the direction of the rhizosphere effect between the
present study and the literature: while certain root exu-
dates inhibit nitrification in wheat, sorghum, and rice,
this effect has not been shown in maize [62]. Sampling
in the present study occurred during the silking period
of maize, when crop N uptake reaches a maximum. The
rhizosphere may be N-depleted in comparison to bulk
soil, and microbial N limitation may account for the de-
creased abundance of these N-cycling genes. Differences
in soil organic matter or shifts in root exudation during
development [63] leading to altered rhizosphere carbon
availability may also account for the change in direction
of the rhizosphere effect in the present study as com-
pared to the literature. Increased sampling frequency
over the course of the growing season paired with meta-
bolomic analysis of root exudates would provide insight
into the mechanisms linking root C release and N up-
take dynamics to microbial N-cycling gene abundances.
We hypothesized that differences in N-cycling gene

abundance between conventional and organic systems
would reflect adaptive shifts, increasing the abundance
of gene pathways linking system-specific N inputs to
plant-available species, but this hypothesis was not sup-
ported. Only two of six genes were affected by soil man-
agement history. The abundance of the nosZ and
bacterial amoA genes, the only genes affected by the
M × R interaction, was higher in the organic system
(Fig. 6). The increase in abundance of the nosZ gene
could potentially indicate greater conversion of N2O to
N2 and decreased greenhouse gas production [64], while
increased abundance of the amoA gene may reflect in-
creased conversion of ammonium to nitrite and subse-
quent nitrification products. Higher soil carbon as a
result of long-term organic matter applications at this
site [65] may contribute to higher abundances of the
nosZ gene in bulk and rhizosphere soil in this system.
Putz et al. found that higher soil organic carbon under a
ley rotation increased expression of the nrfA and nosZ
genes relative to the nirK gene as compared to a conven-
tional cereal rotation, favoring higher rates of dissimila-
tory nitrate reduction to ammonium and lower rates of
denitrification [66]. However, previous work in the treat-
ments examined in the present study found that abun-
dances of the amoA and nosZ genes were not correlated
with gross rates of N transformation processes [29]. Pre-
diction of cropping system impacts on microbial N cyc-
ling therefore requires a nuanced integration of gene
abundances with parameters such as carbon availability,
moisture content, and temperature within soil aggregate
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microenvironments over time. That few differences were
observed late in the growing season between N-cycling
genes in systems receiving organic or inorganic N inputs
is consistent with the results of a meta-analysis by Geis-
seler and Scow [32], which found that N fertilizer im-
pacts on microbial communities tend to fade over time.
Sampling occurred at silking in the present study, long
after the preplant fertilizer and compost applications
that likely maximize differentiation between systems. Po-
tential N limitation in the rhizosphere in both systems
may also have outweighed management effects.
Co-occurrence networks, which provide insight into

ecological interactions among microbial taxa [10], were
influenced by M, R, and M × R effects. Bulk and rhizo-
sphere bacterial networks from the conventional system
had the same number of nodes but were more densely
connected than networks from the corresponding soil
compartment in the organic system (Fig. 5). Other bulk
soil comparisons of organic and conventional agroeco-
systems using networks constructed from OTU-level
data have found conventional networks to have more
nodes [13] or, alternatively, fewer nodes and edges than
organic networks [14, 15]. Clearly, predicting co-
occurrence patterns of incredibly diverse microbial com-
munities based on a conventional-versus-organic classifi-
cation is too simplistic. Agricultural management is
likely better represented as a continuum (or continua
along multiple axes) than discrete categories, and causal
relationships between specific practices and network
topological properties have yet to be determined. An
M × R interaction was also observed for network proper-
ties in which size, density, and centralization were lower
in the rhizosphere network from the conventional sys-
tem than from the organic system (Fig. 5, Table 1).
These network properties follow the same pattern as
alpha diversity of bacterial communities, suggesting a
shared yet perplexing cause: while the mechanism re-
mains unclear, rhizosphere communities appear to be
converging from very distinct bulk soils towards similar
diversity and structural metrics. Conventional agricul-
ture is hypothesized to disrupt the connections between
bulk soil and rhizosphere networks, as tillage and min-
eral fertilization are proposed to disturb fungi and soil
fauna that serve as a bridge between bulk soil and rhizo-
sphere environments [50]. While tillage does not differ
between the systems we measured, fertilization effects
are likely partly responsible for the observed interaction.
Regardless of the mechanisms involved, the system-
specific direction of the rhizosphere effect on co-
occurrence network properties suggests that manage-
ment and plant influence interactively determine not
only which taxa are present, but how they interact, with
potential implications for agriculturally relevant func-
tions and ecological resilience.

Hub ASVs were identified in each network based on
high values for normalized betweenness centrality, a
metric often used to describe keystone taxa. Organic
networks had lower normalized betweenness centrality
values than conventional networks (Additional file 6:
Table S5). Lower betweenness centrality values for hub
taxa may indicate that network structure depends less
on individual species, potentially increasing resilience to
environmental stresses that could destabilize networks
overly dependent on hub taxa sensitive to those specific
stresses. Different hub ASVs were identified in each
rhizosphere environment, but information on the ecol-
ogy of these taxa is generally absent from the literature.
Although it would be misleading to state that these taxa
are keystone species in their respective habitats without
experimental validation [48], the fact that many of these
taxa were also identified through indicator species ana-
lysis (Additional file 6: Table S5, bold) suggests that they
play important ecological roles. Future work could ex-
plore the genomes of these ASVs to discern why they
are important in their respective agricultural systems
and test the hypothesis that they serve as keystone spe-
cies using synthetic communities.
Concluding whether adaptive plant-microbe feedbacks

result in an M × R interaction leading to shifts in other
rhizosphere processes is complicated by the importance
of poorly understood fungal communities and methodo-
logical limitations of this study. Numerous fungal taxa
respond to the M × R interaction according to our differ-
ential abundance analysis (Fig. 4), yet knowledge of these
taxa remains limited due in part to the constraints of
culture-dependent methods prevalent in the past. None-
theless, fungi influence inter-kingdom interactions and
agriculturally relevant processes in the rhizosphere [67],
and novel molecular biology tools could be used to improve
our understanding of key fungal regulators identified in
these analyses [68]. Metagenomics and -transcriptomics
would facilitate a much more comprehensive analysis of
potential functional shifts. A highly useful starting point
would be to delve into dynamic variation in microbial genes
involved in carbon metabolism and nitrogen cycling in the
rhizosphere, in combination with root exudate metabolo-
mics and measurements of root N uptake. Stable isotope la-
beling and in situ visualization methods [69–73] could
further complement our understanding of how manage-
ment, plant roots, and their interactive effects shape rhizo-
sphere processes.
The scope of this study was intentionally restricted to

a single genotype of one crop in two management sys-
tems to limit the main sources of variation to the man-
agement and rhizosphere effects that were of primary
interest, but the limits to inference of this small-scale
study must be considered. Other studies in maize have
found that strong legacy effects of soil management
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history are generally acted upon in a similar manner by
two maize cultivars [74] and that rhizosphere bacterial
community composition varies only slightly among hy-
brids from different decades of release [75]. Testing
whether these limited effects of plant selection hold true
for additional contrasting genotypes and genetic groups
of maize would further complement this work. Further-
more, variation in root system architecture across crop
genotypes might interact with tillage and soil properties
responsive to management effects. Management prac-
tices such as the inclusion of forage or cover crops
planted in stands rather than rows might affect the dif-
ferentiation of bulk and rhizosphere soil uniquely from
systems based on perennial crops, successive plantings
of row crops in the same locations, and/or minimal till-
age. Study designs incorporating more genotypes, man-
agement systems, and cultivation environments would
therefore be highly useful to test how results of this
study may be extrapolated to other settings.
Future studies should also identify functional genes

that are upregulated or downregulated in the rhizo-
sphere under specific agricultural management practices.
Whether such functional shifts are adaptive will provide
insight into the relationship between agroecology and
ecology. Positive eco-evolutionary feedbacks resulting in
adaptive microbial communities have been described in
unmanaged ecosystems, for example, habitat-adapted
symbiosis in saline or arid environments [76, 77]. If simi-
lar adaptive recruitment can occur with annual crops in
the context of agroecosystems, maximizing this process
should be added to the list of rhizosphere engineering
strategies and targets for G × E breeding screens [78, 79].
Finally, while our results provide evidence that man-

agement and plant influence interact to shape microbial
communities at one sampling point, we highlight the
need to reframe the M × R interaction as a dynamic
process. Rhizosphere communities may be more differ-
ent from one another than bulk soil communities be-
cause roots develop right after tillage and fertilization,
when management systems are most distinct [44]. Plants
are not static entities, but active participants in the on-
going process of rhizosphere recruitment. As an alterna-
tive to the “rhizosphere snapshot,” we propose a
“rhizosphere symphony” model that acknowledges the
active role of root exudates in orchestrating the compos-
ition and function of microbial communities. Altered
root exudation during development [63] and in response
to water [80] and nutrient limitation [81] can upregulate
or downregulate microbial taxa and functions, as a con-
ductor brings together different sections of instruments
in turn during a symphony. Although it is unknown
whether this plasticity in exudate composition occurs in
response to agricultural management, observations of
changed exudate quantity and quality in response to soil

type [82] (perhaps mediated by the associated microbial
communities [83]) and long-term N fertilization [84]
suggest that it is possible. Differences in the timing of
nutrient availability between management systems, such
as delayed N release from cover crop mineralization
compared to mineral fertilizer, could thus result in
management-system-specific exudate dynamics and
rhizosphere microbial communities, i.e., an M × R inter-
action. If true, this mechanism suggests that we may be
able to manipulate the sound of the symphony by talking
to the conductor: plant-driven strategies may be instru-
mental in maximizing beneficial rhizosphere interactions
throughout the season.

Conclusions
Agricultural management and plant selection are known to
be powerful influences on microbial community assembly,
and our work shows that their interaction results in plant re-
cruitment of management-system-specific taxa and shifts in
microbial networks and at least one N-cycling pathway in
the rhizosphere. Our finding that agricultural management
practices impact rhizosphere microbial communities differ-
ently from the bulk soil should be used to guide research
priorities and management decisions. The rhizosphere
should be recognized as an integral component of sustain-
able agriculture research that behaves uniquely in compari-
son to bulk soil. On one hand, plant effects are often
neglected in studies investigating how fertilization, tillage,
crop rotations, or other management practices affect micro-
bial communities, but valuable insight can be gained from
analyzing both bulk and rhizosphere samples. Measuring
responses of the bulk soil microbial community can help
predict rates of biogeochemical processes at the field, land-
scape, or ecosystem scale [85, 86]. When plant outcomes
such as agricultural productivity are of interest, however, the
rhizosphere microbes that are so tightly linked to the health
of their host are of critical importance. On the other hand,
plant-centric rhizosphere engineering and plant breeding ef-
forts to capitalize on beneficial plant-rhizosphere microbe
interactions should not overlook how agricultural manage-
ment may modify their intended impacts. Understanding
and optimizing the interactive effects of management and
plant processes regulating rhizosphere assembly provides
untapped opportunities to develop more sustainable and
productive agroecosystems.

Methods
Soil collection and processing
Sampling was conducted during the silking phase of
maize (NuTech OA-290 CNV) on July 5, 2017 in the
Century Experiment at the Russell Ranch Sustainable
Agriculture Facility (Winters, CA, USA). Samples were
collected from three plots per treatment (n = 6 plots) in
the maize-tomato rotations, which have been under
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continuous organic and conventional management, re-
spectively, for 23 years. Plots were furrow-irrigated and
planting density was 80,275 plants ha− 1. In each plot,
shovels were used to remove three randomly selected
maize plants (n = 18 plants) and the associated root
crowns to a depth of 20 cm. Only plants with adjacent
plants on both sides were chosen to avoid edge effects.
Samples were taken from two soil compartments (n = 36
samples): the rhizosphere and bulk soil. Rhizosphere soil
was sampled from the soil adhering to the root crowns,
where rooting was so dense that all soil was determined
to be under the influence of roots. Bulk soil was taken
adjacent to the excavated plant (20 cm from where the
stalk had been) from 0 to 20 cm depth. Bulk and rhizo-
sphere samples for DNA analysis were sieved to 2mm,
gravimetric water content was recorded, and samples
were stored at − 80 °C. Soil chemical properties were an-
alyzed at the UC Davis Analytical Lab (Davis, CA, USA);
soil properties and the corresponding protocol citations
can be found in Additional file 2: Table S1.

Sequencing and bioinformatics
Genomic DNA was extracted from bulk and rhizo-
sphere soil with a DNeasy PowerSoil kit according to
manufacturer’s instructions (Qiagen, Inc.) and DNA
was stored at − 80 °C. Investigation of microbial com-
munities was based on paired-end amplicon sequen-
cing of the 16S rRNA gene and the ITS region of
fungal ribosomal DNA on an Illumina MiSeq PE 300
platform. The 16S rRNA gene was amplified using the
primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′),
which are specific to the V4 region [87]. The ITS
region was targeted with the primers ITS1F (5′-
CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R
(5′-GCTGCGTTCTTCATCGATGC-3′) [88]. Raw
data generated from sequencing were demultiplexed
using idemp, and primers were removed using cuta-
dapt [89]. All further read processing was done in the
dada2 package [90] of R v.3.4.1 [91]. 16S rRNA gene
forward reads were truncated to 240 bp and reverse
reads to 160 bp based on read quality profiles, and all
reads were filtered and trimmed using the parameters
maxEE = 2 and truncQ = 2. ITS reads were not trun-
cated to a specific length, as the length of this region
is highly variable, and filtering and trimming was done
with the parameters maxEE = 2 and truncQ = 11. Bac-
terial and archaeal taxonomy was assigned to the
genus level using the SILVA reference database v.128
[92], and fungal taxonomy was assigned using the
2017 release of the UNITE database [93]. Sequences
were rarefied to 4880 reads per sample for bacteria/ar-
chaea and 19,438 reads per sample for fungi, leaving a

total of 2105 bacterial/archaeal and 754 fungal ampli-
con sequence variants (ASVs) for further analysis.

Microbial community analysis
Microbial diversity and community composition were
analyzed at the ASV level with the phyloseq [94] and
vegan [95] packages in R. The Shannon index was calcu-
lated for bacterial and fungal samples at the ASV level as
a measure of diversity. The effects of plant selection,
management, and their interaction on diversity (Shan-
non index) were tested using ANOVA with plot as a
random effect. Because the interaction between fixed ef-
fects was significant, the emmeans package was used to
test differences between bulk and rhizosphere samples
for each management system [96]. Non-metric multidi-
mensional scaling (NMDS) of Bray-Curtis dissimilarity
matrices was used to identify differences between micro-
bial communities sampled from conventional bulk (CB),
conventional rhizosphere (CR), organic bulk (OB), and
organic rhizosphere (OR) soil. Separate ordinations were
carried out for bacterial/archaeal and fungal communi-
ties. Effects of management (M), rhizosphere (R), and
the M × R interaction on microbial community compos-
ition were tested with permutational multivariate ana-
lysis of variance (PERMANOVA) based on Bray-Curtis
dissimilarity with plot as a random effect. Analysis of
similarity (ANOSIM), a rank-based test, was carried out
on the pairwise differences CB-OB, CR-OR, CB-CR, and
OB-OR to complement PERMANOVA. The Bonferroni
adjustment was used to control the family-wise error
rate at α = 0.05 for the family of four comparisons.
We conducted differential abundance analysis to ex-

plore which taxa contributed to this variation in com-
munity composition and compare the magnitude of the
rhizosphere effect in each system. Differentially abun-
dant taxa occur more frequently in one environment in
a pairwise comparison. Differential abundance analysis
was carried out using the DESeq2 package in R [97].
Rarefied data were filtered to remove sequences
present in fewer than five samples to prevent bias
due to low-prevalence taxa. Pairwise comparisons of
ASV abundance were carried out between CB-OB
(management in bulk soil), CR-OR (management in
rhizosphere soil), CB-CR (rhizosphere in conventional
system), and OB-OR (rhizosphere in organic system).
ASVs were considered to differ significantly in the
two environments at a significance level of p < 0.0125
based on the Bonferroni correction to control the
family-wise error rate at α = 0.05.
Indicator species analysis, a distinct and complemen-

tary method, was used to identify microbial taxa prefer-
entially associated with a given environment or pair of
environments and to determine the direction of the
rhizosphere effect in each system. Indicator taxa are
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defined based on a combination of specificity (occurring
in that environment more frequently than other environ-
ments) and fidelity (the majority of taxon members are
found in that environment) [98]. Differentially abundant
and indicator taxa may overlap, as indicator taxa with
high specificity for a given environment may be more
abundant there, but indicator taxa with high fidelity but
low specificity may not show up in differential abun-
dance comparisons. Indicator ASVs significantly associ-
ated with one of the four environments (CB, CR, OB,
OR) as well as those affected by management (found in
CB + CR or OB +OR) and rhizosphere effects (found in
CR +OR) were identified using the indicspecies package
in R [98]. The IndVal (indicator value) index was calcu-
lated for each species-site combination and tested for
significance with 999 permutations using the indicspe-
cies::multipatt function [99]. The Bonferroni correction
was used to control the family-wise error rate at α =
0.05.

Co-occurrence network analysis
Co-occurrence networks for CB, CR, OB, and OR sam-
ples were constructed to provide insight into the struc-
ture and putative ecological interactions of microbial
communities. In each of these networks, nodes represent
ASVs and edges represent significant co-occurrence
relationships. Other network properties thought to be
ecologically relevant were calculated for each treatment
(n = 1), including size, mean degree, density, centralization,
and modularity (Table 1).
Only sequences present at least ten times and in at

least five samples were included in network analyses to
prevent loss of specificity and sensitivity [10], for a total
of 335 bacterial and 149 fungal ASVs. HabitatCorrected-
Network, a correction algorithm that accounts for po-
tential habitat filtering effects, was used to construct
correlation tables with Python and account for potential
effects of combining samples from different plots at the
Russell Ranch Sustainable Agriculture Facility [100].
Habitat filtering leads to spurious co-occurrences among
taxa that are associated with specific environments, and
correlation tables generated without correcting for these
effects will result in inflated co-occurrence networks
with a high false positive rate [10]. HabitatCorrectedNet-
work reduces the false positive rate by correcting each
sample for the mean of that subgroup before generating
correlations. Co-occurrence networks were constructed
from positive Spearman correlations (ρ > 0.75 and p <
0.05) using a centered log ratio transformation for CB,
CR, OB, and OR. Network properties of interest were
calculated using the igraph package [101]. Bacterial/ar-
chaeal and fungal hub taxa were identified within each
network as the five ASVs with the highest betweenness
centrality indices [13, 30]. Hub position in a network

could indicate a keystone species whose presence is
critical to community structure and function, but defin-
ing these species as keystones requires experimental val-
idation [102]. Betweenness centrality indices were
normalized to allow comparison across networks.

Quantitative PCR (qPCR)
We were interested in characterizing four major trans-
formations that occur in the nitrogen cycle: nitrogen fix-
ation, nitrification, denitrification, and dissimilatory
nitrate reduction to ammonium. We quantified the
abundance of genes that represent different components
of the nitrogen cycle (nifH, amoA, nirK, nirS, and nosZ)
in DNA extracted from soil samples (Additional file 7:
Table S6). For PCR amplification of all functional genes,
a microfluidics Fluidigm Gene Expression chip was used
to quantify all genes simultaneously. Genes were ampli-
fied using the primers described in Additional file 7:
Table S6. The thermocycler program was 95 °C for 10
min followed by 14 cycles of 95 °C for 15 s and 58 °C for
4 min. A 5-μL mixture was then prepared with a final
concentration of 1X SsoFast EvaGreen Supermix with
Low Rox (Bio-Rad Laboratories, Hercules, CA), 1X DNA
Binding Dye Sample Loading Reagent (Fluidigm, San
Francisco, CA), and 2.25 μl pre-amplified product. A
separate master mix was prepared with a final concen-
tration of 1X Assay Loading Reagent (Fluidigm, San
Francisco, CA), 0.5X DNA Suspension Buffer (Teknova,
Hollister CA), and 50 μM of each forward and reverse
primer. Each 5-μL mixture containing product was
mixed with 5 μL of master mix and loaded onto a 96.96
Fluidigm Gene Expression chip. Fluidigm amplification
was performed according to the following program:
70 °C for 40 min, 58 °C for 30 s, 95 °C for 1 min followed
by 30 cycles of 96 °C for 5 s, 58 °C for 20 s, and followed
by dissociation curve. Standards for each gene were pre-
pared from sample-derived amplicons from a mixture of
soils that were quantified and serially diluted prior to
analysis on the Fluidigm system. All samples and stan-
dards were analyzed in 12 replicates. Fluidigm Real-
Time PCR Analysis software version 4.1.3 and the copy
number of each gene (Qubit) were used to determine
the Ct. All Fluidigm RT-qPCR was conducted at the Roy
J. Carver Biotechnology Center at the University of Illi-
nois at Urbana-Champaign (Urbana, IL, USA). Fluores-
cence data were converted to gene copies per ng DNA
using standard curves generated individually for each
gene from serial dilutions of a corresponding standard of
known concentration.
Mean values and standard errors for number of copies

per ng DNA were calculated from technical replicates
with quality scores of at least 0.65. Technical replicates
that were not detected (and thus failed to pass this qual-
ity score threshold) were not considered in subsequent

Schmidt et al. Microbiome           (2019) 7:146 Page 14 of 18



analyses. Principal components analysis (PCA) was used
to ordinate samples, and PERMANOVA (vegan::adonis)
was used to test the fixed effects of management, soil
compartment, and their interaction on gene abundance
in R [91]. Data were then subset by gene and ANOVA
was conducted (mixlm::lmer) on each gene to test fixed
effects of management, soil compartment, and their
interaction with sampling plot as a random effect. Resid-
uals were tested for normality (stats::shapiro.test), and
outliers farther than four times Cook’s distance from the
mean were removed until normality of residuals was sat-
isfied (up to two outliers).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-019-0756-9.

Additional file 1. Raw data from qPCR analysis. This file contains
Fluidigm output data for all samples (“Sample ID” column contains
abbreviations as used in this manuscript, with biological replicate number
following the abbreviation). Twelve technical replicates were prepared for
each sample, but only samples that passed the quality control check (see
“Call” column) were included in calculations.

Additional file 2: Table S1. This file contains Table S1: Soil properties.

Additional file 3: Table S2. This file contains Table S2: ANOSIM
pairwise comparisons of microbial community composition.

Additional file 4: Table S3. This file contains Table S3: Bacterial
indicator taxa.

Additional file 5: Table S4. This file contains Table S4: Fungal indicator taxa.

Additional file 6: Table S5. This file contains Table S5: Hub taxa.

Additional file 7: Table S6. This file contains Table S6: Genes
quantified using qPCR.

Additional file 8: Figure S1. Alpha diversity of bacterial and fungal
communities. A) Bacterial diversity was affected by plant selection, but
the direction of the effect varied between management systems. B)
Fungal diversity was not affected by management or rhizosphere effects.
* indicates a significant difference between soil compartments within
management system at the α = 0.05 level. Diversity analyses were
conducted at the ASV level.

Additional file 9: Figure S2. Relative abundances of bacterial and
fungal genera. A) Genus-level relative abundance data showed that Bacil-
lus, Skermanella, and Steroidobacter were among the most common bac-
terial genera in all samples. The genus Pseudarthrobacter tended to be
more abundant in bulk than rhizosphere samples in both systems,
whereas the genera RB41 and Acidibacter tended to be more abundant
in the rhizosphere in both systems. B) The fungal genera Mortierella and
Cryptococcus tended to be most abundant across all samples. Members
of the genus Cystofilobasidium tended to be more abundant in the or-
ganic system, whereas members of the genera Rhizopus and Minimedusa
tended to be more abundant in the conventional system. The genera
Articulospora and Aspergillus appeared to respond to plant selection,
with Articulospora more abundant in bulk soil and Aspergillus more
abundant in the rhizosphere. Only the 20 most abundant bacterial and
fungal genera are represented with unique colors; all other genera are
contained in “Other”.

Additional file 10: Figure S3. Indicator species analysis. A) Seventy-four
bacterial and B) 49 fungal ASVs were identified as indicator species, oc-
curring often in a given environment and rarely elsewhere. Far more ASVs
were management-specific than rhizosphere-specific. Taxonomic informa-
tion about the indicator ASVs can be found in Additional file 4: Table S3
and Additional file 5: Table S4. C = conventional, O = organic, B = bulk,
R = rhizosphere.

Additional file 11: Figure S4. Multivariate analysis of N-cycling func-
tional genes. A) Principal components analysis (PCA) revealed that sam-
ples separated primarily by soil compartment and secondarily by
management system along the first principal component axis, which ex-
plained 69.6% of variation. B) Patterns of gene abundances for the N-
cycling genes amoA (archaeal and bacterial), nifH, nirK, nirS, and nosZ
were similar for all treatments, suggesting that system-specific bottle-
necks in the N cycle were not observed. Accordingly, PERMANOVA re-
vealed significant effects of soil compartment (p < 0.001) and
management (p < 0.05) but not their interaction (p > 0.05).
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