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Selecting crops that express certain reproductive, leaf, and root traits has formed

detectable, albeit diverse, crop domestication syndromes. However, scientific and

informal on-farm research has primarily focused on understanding and managing

linkages between only certain domestication traits and yield. There is strong evidence

suggesting that functional traits can be used to hypothesize and detect trade-offs,

constraints, and synergies among crop yield and other aspects of crop biology and

agroecosystem function. Comparisons in the functional traits of crops vs. wild plants

has emerged as a critical avenue that has helped inform a better understanding of how

plant domestication has reshaped relationships among yield and traits. For instance,

recent research has shown domestication has led important economic crops to express

extreme functional trait values among plants globally, with potentially major implications

for yield stability, nutrient acquisition strategies, and the success of ecological nutrient

management. Here, we present an evidence synthesis of domestication effects on crop

root functional traits, and their hypothesized impact on nutrient acquisition strategies

in organic and low input agroecosystems. Drawing on global trait databases and

published datasets, we show detectable shifts in root trait strategies with domestication.

Relationships between domestication syndromes in root traits and nutrient acquisition

strategies in low input systems underscores the need for a shift in breeding paradigms

for organic agriculture. This is increasingly important given efforts to achieve Sustainable

Development Goal (SDG) targets of Zero Hunger via resilient agriculture practices such

as ecological nutrient management and maintenance of genetic diversity.
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INTRODUCTION

Transformations Toward Resilient
Agroecosystems
There has been considerable expansion in research focused
on better understanding viable pathways toward sustainable
agricultural systems, from ecological intensification to diversified
farming systems and agroecological practices (DeLonge et al.,
2016). Many scholars and scientists believe we are currently
in a watershed moment for transformation in agricultural
practices, which are paralleled by efforts to achieve Sustainable
Development Goal (SDG) targets of Zero Hunger through
resilient agriculture practices, enhanced on-farm diversity, and
maintenance of genetic diversity (Blesh et al., 2019). Within this
context, a shift from inorganic inputs to organic amendments
has been a central focus for addressing many of our pressing
agricultural issues (Chen et al., 2018; Isaac et al., 2018). While
organic transformations are key for ensuring sustainable food
production landscapes into the future, such transitions require
(1) well-developed diagnostics of the plant-soil continuum under
organic amendments, and (2) a better understanding of the
role crop genetic resources play in governing soil nutrient
management and crop acquisition strategies.

Soil Amendments, Nutrient Availability, and
Crop Performance
Most modern crop species and genotypes are adapted to exploit
nutrient-rich habitats through traits that confer fast growth
and rapid rates of nutrient uptake (Lambers and Poorter,
1992). However, as most artificial selection occurs, with some
exceptions, under conditions of high resource availability, the
transfer of modern crops into low input agricultural systems is
often impeded or challenging (Warschefsky et al., 2014). Many
growth-supporting soil physical and chemical characteristics
can change significantly when shifting from conventional to
organic production, where mineral fertilizer and pesticide inputs
are minimized (Mäder et al., 2002; Chen et al., 2018). As
an integrated approach, organic farming seeks to manage
soil fertility using ecological approaches by enhancing crop
production through a greater reliance on biotic interactions and
the mineralization of organic inputs, rather than relying on off-
farm chemical inputs (Drinkwater and Snapp, 2007; Heckman
et al., 2009). In turn, soil environments in organic systems are
characterized by slow release of nutrients derived from organic
sources which are supported by, or a direct consequence of, (1)
longer and more complex crop rotations, (2) coupled carbon and
nutrient cycles, (3) holistic farm management, and (4) ecological
approaches to pest management.

In organic systems amendments such as composts, manures,
and cover crops are a primary source of crop nutrients, with rates
of nutrient availability and transfer supported by soil biological
mineralization and microbial community interactions. Indeed,
in many cases even inorganically fertilized crops obtain 50%
of their nitrogen (N) from biologically mineralized organic N
pools (Gardner and Drinkwater, 2009; Yan et al., 2020). But while
inorganic fertilizers tend to reduce soil organic carbon (C) and

microbial biomass, organic amendments generally enhance soil
physiochemical properties including soil organic matter (SOM)
and microbial biomass (Drinkwater and Snapp, 2007). In turn,
enhanced SOM from organic amendments contributes to the
retention of plant-available nutrients and water, maintenance of
soil structure, and sources of soil phosphorus (P) and total N
contents, but these contributions tend to be highest in soils with
initially low fertility (Chen et al., 2018). Importantly, the positive
effects of organic amendments onmicrobial biomass -the agent of
nutrient mineralization (Cayuela et al., 2009)–do not consistently
and predictably increase crop nutrient uptake, in part because of
the complex three-way interactions between crops, soil nutrient
pools, and soil microbial communities. For example, crops can
vary in their ability to compete with soil biota for nutrients, or
modify their root environment and associated soil biota to be
favorable for organic mineralization.

Crop Trait Variation and Organic
Management
Due to relatively limited efforts in breeding crops explicitly for
organic systems, most organic farmers in North America
currently use modern cultivars that were bred for use
in conventional high-input production systems (Murphy
et al., 2007). As a result, organic breeding represents an
unexplored frontier in crop breeding and ecophysiology.
Indeed, understanding and managing the plant-soil-microbial
interactions in organic systems with greater precision could
contribute to the development of crop cultivars that respond
preferentially to organic soil environments. However, due to
unique soil systems present in organic vs. conventional systems,
plant traits that are of interest to organic crop breeding may
differ widely from those favored by conventional crop breeding.
Undoubtedly, plant traits selected over the course of long
domestication histories can have significant legacies for nutrient
acquisition strategies (Figure 1).

Selection for crops that express certain reproductive, leaf, and
root traits has formed detectable, albeit diverse, domestication
syndromes: suites of plant traits which differ between crops
and their wild progenitors. However, scientific and informal
on-farm research has primarily focused on understanding and
managing linkages between only certain domestication traits and
yield, particularly under conventional agricultural management
systems (Meyer et al., 2012). There is strong evidence suggesting
that functional traits—i.e., the morphological (e.g., leaf area),
physiological (e.g., photosynthesis), and chemical (e.g., N
concentrations) traits of plants—can be used to hypothesize
and detect trade-offs, constraints, and synergies among crop
yield, other aspects of crop biology, and agroecosystem function
(Martin and Isaac, 2015). Functional trait-based studies have
also been instrumental in advancing our understanding of
observable ecological patterns, e.g., relationships between on-
farm diversity and agroecosystem processes, while providing
a framework for predicting future agroecosystem responses to
environmental change (Lavorel and Garnier, 2002; Damour
et al., 2018). Yet while the literature exploring trait-based
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FIGURE 1 | Hypothesized root functional trait syndromes via selection through domestication (A) and hypothesized effects of selected root traits on rhizosphere

functions (B). This figure was created with BioRender [1Cahill et al., 2010; 2Herz et al., 2018; 3Fulthorpe et al., 2020; 4Bargaz et al., 2017; 5Martin et al., 2019].

agroecology is growing (Martin and Isaac, 2018), to date no
studies have explicitly summarized existing literature and data,
in order to propose hypotheses on (1) how and why traits
are expected to shift within and among crops in organic vs.
conventional system; and (2) how changes in traits and trait
syndromes may influence crop nutrient acquisition strategies in
organic systems.

Crop Trait Variation and Domestication
Syndromes
In agricultural systems, studies have evaluated how interspecific
(Buchanan et al., 2020; Gagliardi et al., 2020) and intraspecific
(Isaac and Martin, 2019; Coleman et al., 2020; Sauvadet
et al., 2021) trait variation are mechanistically linked with
agroecosystem functioning. Others have also applied a functional
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traits lens to understand the impacts and outcomes of crop
domestication. For example, through domestication crops tend
to express traits associated with higher rates of resource
capture—namely greater aboveground biomass, higher whole-
plant photosynthetic rates, greater leaf area, and higher specific
leaf area (SLA)—as compared to their wild progenitors (Milla
et al., 2014). Milla and Matesanz (2017) showed that crop
domestication was associated with a general increase in certain
crop physiological and chemical traits, including leaf-level
photosynthesis and leaf N concentrations, but there were mixed
results among crop species. The lack of evidence for systemic
shifts in leaf photosynthesis and N concentrations through
domesticationmay owe tomultiple factors, such as total N uptake
being diluted by a greater plant biomass (Wacker et al., 2002), or
crop progenitors already exhibiting leaf traits on the acquisitive
end of trait strategies (Milla et al., 2015).

In comparison, shifts in root functional traits throughout
domestication have largely been overlooked. It appears that
relationships between root functional traits, including specific
root length (SRL), specific root area (SRA), root N, and root
diameter (D), and plant resource acquisition strategies are
arguably more complex than leaf trait trade-offs (Isaac and
Borden, 2019). For instance, root trait responses to resource
gradients are often confounded by collaboration gradients with
soil microbial populations and diversity (Bergmann et al., 2020).
Broadly though, it is often hypothesized that compared to wild
relatives, crops allocate less biomass to below- vs. aboveground
biomass as a result of (1) abundant soil resources, and (2)
reduced herbivory pressures in agricultural systems. Importantly,
some studies show that semi-dwarf cultivars, which have been
a large part of cereal domestication, have shown little effects
on root growth but some effects on root activity (Gentile et al.,
2005). However, one may hypothesize that consistent shifts in
root trait values have occurred in crops with domestication
(Figure 1). Specifically, owing to domestication in high resource
environments, crops may have greater investment to individual
roots. This general pattern is expressed by the following
morphological trait syndromes in crops: (1) lower root D, paired
with (2) low SRL, lateral root density, and specific root tip density.
These morphological traits can also be associated with crops
expressing certain root chemical traits including (1) higher root
N concentrations, and (2) lower root C:N ratios. Each of these
shifts in root trait expression can be linked to multiple spatial,
biochemical, and microbial factors within soil environments,
with well-established links to nutrient acquisition success.

Domestication Syndromes, Root
Functional Traits, and Organic Agriculture
While literature supports hypotheses surrounding (1) how root
traits have changed through the course of crop domestication,
and (2) how those root trait syndromes might be expected
to influence nutrient acquisition with ecological management,
there are few studies that have integrated these two themes.
Therefore, here, we seek to chart new territory in the areas
of crop breeding and organic management, by synthesizing
knowledge on the following questions: (1) has domestication

systematically influenced root functional traits in crops vs. wild
progenitors?; and if so (2) do root traits have a hypothesized
influence on nutrient acquisition in low input systems? Assessing
these questions then informs our final question: (3) have
transformations toward low input organic systems reframed
questions of domestication syndromes in crops?

METHODS

To assess our first question, we extracted and analyzed bivariate
correlations among three root traits including SRL, root N,
and root D, by consolidating data on four crops and their
wild progenitors. Data were extracted from the Global root
traits (GRooT) database (Guerrero-Ramirez et al., 2021) and
included: (1) rice (Oryza sativa) and its wild relativeO. rufipogon;
(2) durum wheat (Triticum durum) and its wild relative T.
dicoccoides; (3) maize (Zea mays) and wild relative Z. mays
mexicana; and (4) grass species Panicum virgatum (crop) and P.
capillare (wild). We compared patterns of root trait trade-offs
with patterns observed in all species in the GRooT database in
bivariate figures depicting SRL as a function of root D (n= 1,460)
and root N (n = 1,247). This root trait data was pooled into
figures depicting root trait trade-offs.

We also consolidated data from peer-reviewed papers that
quantified root traits in both wild progenitors and domesticated
crops. In these papers, plants were grown in the same conditions
and traits measured in the same way, thus providing a case
by case comparison of effects of domestication on root traits.
This systematic review uses a PICO formula: population (crop
functional traits), intervention (domestication), comparison
(wild plants to artificially selected plants) and outcome (nutrient
acquisition). We searched the Web of Science database for terms
included in our PICO formula [root trait∗ AND domestication],
which resulted in 200 papers published over the past 20 years. Of
these 200 papers, 11 met the following inclusion criteria: papers
had to present paired data on wild relatives and domesticated
crops grown in similar conditions, and include at least one
measure of SLA, root N, root D, or total root length (TRL).
We then conducted citation mining on all 11 papers, and
with this approach included another three papers. This resulted
in a total of 14 papers used in our analysis here (Table 1).
Data was compiled from tables and figures in manuscripts
and supplementary files, and consolidated and analyzed to
depict the percent change (positive or negative) in root trait
values (SLA, TRL, root D, root N) between wild relatives and
paired domesticated crop. Finally, we used outcomes from our
systematic review to inform hypotheses on how domestication
syndromes of root traits may impact nutrient acquisition in low
input and organic systems, which rely on ecological processes for
crop nutrient supply.

RESULTS AND DISCUSSION

Root Trait Patterns Globally
Crop root traits co-vary in patterns consistent with established
trait trade-offs in wild plants globally (Figure 2). In bivariate
space, root D and SRL are negatively correlated, such that

Frontiers in Sustainable Food Systems | www.frontiersin.org 4 September 2021 | Volume 5 | Article 716480

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Isaac et al. Root Traits and Domestication

TABLE 1 | Sources identified through a systematic literature review, with

associated wild relative, crop and suite of root traits in each source.

Source Wild relative Crop Root

traits

Nakhforoosh et al.,

2021

Triticum dicoccoides Triticum durum

(durum wheat)

SRL; TRL

Marques et al.,

2020

Cicer reticumlatum Cicer arietinum

(chickpea)

SRL

Schmidt et al.,

2020

Pre1942 Zea mays

mays hybrids

Post 1942 Zea mays

mays hybrids (maize)

TRL; root

N

Barel et al., 2019 Arrhenatherum

elatius

Festuca rubra

Trifolium pratense

Vicia cracca

Raphanus

raphanistrum

Cichorium intybus

Avena sativa (oat)

Lolium perenne

(ryegrass)

Trifolium repens

(clover)

Vicia sativa (vetch)

Raphanus sativus

(fodder raddish)

Cichorium endive

(endive)

Root N

Berny Mier y Teran

et al., 2019

Wild Phaseolus

vulgaris

Phaseolus vulgaris SRL

Martín-Robles

et al., 2019

Cicer reticulatum

Zea mexicana

Triticum dicoccoides

Cicer arietinum

(chickpea)

Zea mays mays

(maize)

Triticum durum

(durum wheat)

SRL, root

D

Pastor-Pastor

et al., 2019

Physaria pinetorum

Physaria mendocina

Physaria (high

seed-yield accession)

SRL; root

N

Junaidi et al., 2018 Aegilops tauschii Triticum aestivum

(wheat)

SRL, root

D, TRL

Roucou et al.,

2018

Triticum dicoccoides Triticum durum

(durum wheat)

SRL, root

D

Pérez-Jaramillo

et al., 2017

Wild Phaseolus

vulgaris

Phaseolus vulgaris

(bean)

SRL

Chinchilla-Ramírez

et al., 2017

Zea mays parviglumis Zea mays mays

(maize)

TRL

Gioia et al., 2015 Triticum dicoccoides Triticum durum

(durum wheat)

TRL

Szoboszlay et al.,

2015

Zea mays parviglumis Zea mays

subsp. mays (maize)

TRL, root

D

Gaudin et al., 2011 Zea mays parviglumis Zea mays mays

(maize)

SRL, TRL

TRL, Total Root Length; SRL, Specific Root Length; root N (nitrogen); root D (diameter).

species expressing large root D and low SRL fall on the
resource conservative end of the relationship, and species
expressing high SRL and constrained root D fall on the
resource acquisitive end of the relationship. Broadly, wild
relatives express more resource acquisitive root traits compared
to their domesticated counterparts, with systematic shifts
toward resource conservation in crops, especially for rice
and maize.

Root trait variation between wild relatives and domesticated
crops is a function of conscious and unconscious artificial
selection and in response to soil environments (Zohary, 2004).

The wild progenitors of many crops already existed in the
acquisitive end of the root economic spectrum (Milla et al.,
2015), but here we show a shift toward resource conservation
in root trait expression with domestication. This finding is (1)
counter to evidence from studies on leaf traits, which are shown
to express leaf-level trait values that reflect highly resource
acquisitive strategies with domestication (Cunniff et al., 2014;
Milla et al., 2015); but (2) supports the meta-analysis of Martín-
Robles et al. (2019) which illustrated diverse directions of change
in root traits with domestication, with no systematic pattern
among plant functional groups. Complicating factors include
the nature and relative recency of shifts in soil environments,
primarily increased use of N and P fertilizers in the last ∼100
years, compared to the effects of millennia of selection on other
traits such as seed size (Meyer et al., 2012; Abbo et al., 2014).
Disentangling and isolating the effects of domestication per se
on root traits is further complicated due to the impacts of farm
management techniques such as tilling (Fiorini et al., 2018), and
soil physical properties (Borden et al., 2020), on root traits.

Changes in Crop Root Functional Traits
With Domestication–Data Comparison
We compared trait values of domesticated crops and their
wild relatives, covering a range of crop-wild relative complexes
including wheat (Aegilops tauschii), durum wheat (Triticum
durum ssp. dicoccoides), maize (Z. mays mexicana), Chickpea
(Cicer reticulatum). Figure 3 illustrates the percent change in
root trait values through domestication, ordered by phylogenetic
relatedness. Results from published literature are mixed. In
some instances, SRL, TRL, root D, and root N values are
higher in wild relatives vs. crops, while the opposite pattern is
true for other crop-wild relative combinations. However, root
D is generally larger in wild relatives vs. crops, expressing
a negative percent change in trait values with domestication.
Interestingly, SRL tends to have positive percent change in trait
values with domestication, indicating a shift toward higher SRL
in domesticated crops as compared to wild relatives (Figure 3).
However, this trend is opposite for leguminous species Phaseolus:
the percent change in trait values through domestication for
beans is consistently negative.

These shifts in root trait values reported between paired
domesticated crop traits with wild relatives, are not consistent
with trends reported from global datasets as shown in Figure 2.
While these trends of crops and wild relatives fall into established
trait trade-off patterns, they do not reflect the nuances of pairing
crops and wild relatives in the same growing conditions with
the same measurements. In doing so here, we show a clearer
trend of domesticated crops expressing acquisitive traits (higher
SRL and lower root D) than those compiled from unpaired
global datasets; a finding that is more consistent with leaf
trait changes that occur through domestication. Our paired
data highlights another critical area of root trait shifts as a
result of domestication: the strength of relationships between
root traits and arbuscular mycorrhiza. Older crop varietals may
be more able to form these symbiotic relationships regardless
of nutrient availability, while modern varietals only benefit
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FIGURE 2 | Bivariate relationships among root traits [root diameter and

specific root length (A) and root N and specific root length (B)] of crops. In

order to visualize the extent of root trait trade-offs, crops and their wild

relatives are included, as well as trait relationships observed across the whole

GRooT dataset (Guerrero-Ramirez et al., 2021).

from the symbiosis when under nutrient stress (Martín-Robles
et al., 2018). Plant-microbial symbiosis that destabilize systematic
trait trades-offs (Bergmann et al., 2020), are not consistently
accounted for in trait databases when pairing data from unrelated
studies, though these relationships are key factors underpinning
root trait expression and covariation.

Hypothesized Outcomes for Nutrient
Acquisition
Variation in root traits may either facilitate or inhibit organic
nutrient mineralization and nutrient acquisition. Plants exhibit
diverse root acquisition strategies to enable nutrient uptake,
including mechanisms that regulate nutrient bioavailability
(Hinsinger, 2001), supply rates (Isaac and Kimaro, 2011), and

foraging and absorption (Borden et al., 2020). Some of these
mechanisms are complementary in order to enable acquisition
of nutrients with different mobility and availability through
time and space (Lambers et al., 2008; Lynch, 2019). Shifts in
root traits with domestication will have explicit effects on the
success of nutrient acquisition in low input organic systems
(Figure 1).

Specifically, higher SRL and TRL are linked with foraging
and higher resource uptake zones (Cahill et al., 2010), which
could complicate soil nutrient acquisition in organic systems.
In contrast, overall higher root biomass is associated with
higher phosphate-solubilizing enzyme activity (Bargaz et al.,
2017), which benefits plant P acquisition in low-input organic
systems. How root exudation varies among root traits is not
yet resolved, though several studies suggest an increase in
exudation and SOM mineralization, with smaller root D, higher
root N concentrations, and higher SRL (Guyonnet et al., 2018;
Poirier et al., 2018; Han et al., 2020; Henneron et al., 2020).
Although root traits associated with rapid nutrient acquisition
are more likely to dominate when inorganic nutrient supply is
high, root exudation is expected to increase under low nutrient
supply as more biomass is allocated to roots (Herz et al., 2018).
Chemically, root exudate composition has been shown to co-
vary with root traits, with lower C:N exudates associated with
high resource acquisitive traits (Herz et al., 2018). Root exudation
is a significant mechanism regulating nutrient mobilization
and mineralization by providing soluble C and nutrients that
can stimulate soil microbial activity (Meier et al., 2017). Root
exudates can also stimulate the release of N from mineral-
associated organic matter into soil solution, further accelerating
microbial activity that drives nutrient mineralization (Jilling
et al., 2018). This is of particular interest for organic and low-
input agricultural systems, because lower C:N exudates may
cause a stronger stimulatory effect on nutrient mineralization
when available N is more limited in organic systems, compared
to conventional high-input cropping systems.

Systematic shifts in crop root traits can also indirectly
affect nutrient availability and acquisition by altering soil
microbial community composition (Cantarel et al., 2015).
For example, SRL and root D have been shown to predict
total arbuscular mycorrhizal fungi (AMF) colonization, which
can greatly enhance nutrient supply to the host plant (Wen
et al., 2019; Sweeney et al., 2021). In diversified agricultural
systems, higher root D and root C:N, as well as low root N
concentrations, were strong predictors for fungal endophyte
community composition (Fulthorpe et al., 2020), while higher
SRL and lower root D of legumes were associated with
higher counts of root nodules formed in symbiosis with
diazotrophic microorganisms (Martin et al., 2019). Undoubtedly,
domestication effects on root trait values, trade-offs, and
their relationships with microbial communities, are essential
in understanding crop success when transferred to organic
production. Under ecological nutrient management, coupling
microbial activity and mineralization with plant nutrient uptake
tends to decrease potential for nutrient losses (compared to
inorganic fertilizers), thus, contributing another important factor
in achieving environmental sustainability of agriculture.
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FIGURE 3 | Percent change in trait values for 12 crops, organized according to their phylogenic relationships, and their paired wild relatives. Specific root length

(SRL), total root length (TRL), root diameter (root D), and root nitrogen (root N) are depicted.

BOX 1 | Three decades of organic agriculture research at Glenlea,

Manitoba, Canada.

Factors affecting plant nutrient acquisition in organic production have been

studied in the Canadian context at the Glenlea study for three decades.

Within the first 15 years of organic production, researchers observed a shift

in the soil P pools, with less plant available P (Welsh et al., 2009) and more

organic P (Braman et al., 2016). This could either suggest relatively higher

plant P uptake thus reducing the soil available P pool, or alternatively slower

cycling of organic P into the plant availability P pool. Root traits (through their

exudation, associations with mycorrhizae, and architecture) can significantly

increase rates of P cycling along with P acquisition. However, to optimize

this in organic and low-input systems, breeding should consider targeting

root traits that will support these interactions. At Glenlea, the soil biological

community appears to be mineralizing organic P faster, suggesting that the

lower plant P availability in the organic systems is likely related to more rapid

P mineralization coinciding with rapid plant P uptake. Indeed, microbial P was

more responsive to soil wetting after drought in organic than in conventional

production (Braman et al., 2016). The increase in mycorrhizal colonization

in organic crops (Entz et al., 2004), and the decline in abundance of non-

mycorrhizal weeds (Carkner et al., 2020) were both attributed to less available

P. Greater mycorrhizal colonization may have been one reason for greater

zinc uptake in organic compared with conventional wheat at Glenlea (Turmel

et al., 2009). Enzymes play an important role in plant nutrient acquisition.

Fraser et al. (2015a,b) observed greater alkaline phosphatase activity in the

low available P conditions at Glenlea, and linked greater alkaline phosphatase

activity with bacterial phoD gene abundance in soil. Organic systems also had

higher levels of dissolved carbon (Xu et al., 2012) and carbon mineralizing

enzyme activities (unpublished). Organic systems at Glenlea maintained a

more neutral pH (Welsh et al., 2009) which was linked to changes in the soil

bacterial community (Li et al., 2012). These chemical and biological factors

can strongly affect plants’ ability to acquire nutrients through themanagement

of ecological processes.

Acquisition strategies emerging through domestication may
be confounded by nutrient allocation patterns within crops (Løes
et al., 2020). For instance, there is a well-known dilution effect
of minerals in modern wheat grains conferred from higher
yields (Zhao et al., 2009), and studies have recently shown
that nutritional quality is lower in crops compared to wild
relatives (Fernandez et al., 2021). Although acquisition strategies
may change with domestication and translate to highly variable
nutrient uptake across conventional vs. organic systems, the
resulting effects on yield are not as systematic. Additionally, wild
plants are adapted to grow under more stressful environmental
conditions, and thus are likely to allocate greater resources to
constitutive or inducible defenses: Fernandez et al. (2021) showed
that higher herbivory and lower investment in defense was a
common feature of crop domestication. Given controls from
nutrient allocation patterns within crops from wild progenitor
to modern cultivars, and stronger resource allocation toward
plant defense in wild progenitors, one would hypothesize uneven
relationships between root traits and yield, and between defense
and yield, in crops vs. wild plants.

Implications of Root Trait Variation for
Breeding Programs for Ecological and
Organic Nutrient Management
Due to the inherent and multi-faceted differences in growing
environment between organic and conventional production
systems (see Box 1 for a long-term research case study
on soil biochemistry in organic vs. conventional systems),
increased efforts in organic breeding have the potential to
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reduce the yield gap by developing crop cultivars that respond
well to organic environments. For instance, the spatial and
temporal heterogeneity in organic agricultural soils requires
crops with high root plasticity, which in turn confers an
advantage for successful nutrient acquisition in low-input
systems. Conventional seeds often perform poorly in organic
agricultural systems (Boyle, 2016), in terms of leaf area and root
mass development, root branching, nutrient use efficiency, and,
in the case of legumes, nodulation. Such factors makes crop
breeding for organic production difficult but essential.

Cultivar selection is a critical aspect for organic farmers
to consider in relation to soil fertility, as well as pest and
weed management (Bond and Grundy, 2001; Watson et al.,
2002; Zehnder et al., 2007; Lammerts van Bueren and Myers,
2012; Entz et al., 2018). Building on approaches suggested by
Crespo-Herrera and Ortiz (2015) for developing new cultivars
for organic systems, such as (i) multi-location testing to exploit
Genotype × Environment interactions, (ii) shuttle breeding
between organic and conventional production systems to develop
cultivars adapted to both conditions, and (iii) comprehensive
screening of plant materials deposited in gene-banks to identify
promising genetic resources for organic plant breeding, we
highlight the need for increased understanding of the variation
and genetic architecture of root traits important for crop
success under organic conditions. In particular, there remains
a critical need for breeding programs that explicitly focus
on organic agriculture by better understanding relationships
between domestication syndromes, root trait expression, and
nutrient acquisition strategies in low input systems.

Drawing on global datasets and published data, we show
detectable shifts in root trait strategies with domestication.
Relationships between domestication syndromes in root traits,
and the subsequent impact on acquisition strategies in low
input systems, underscores the need for a shift in breeding

paradigms for organic agriculture. Such efforts are under way
in many different field and horticultural crops, for instance in
Canada for wheat (Wiebe et al., 2016; Entz et al., 2018), oats
(Mitchell Fetch et al., 2021) and soybean (Boyle, 2016). As the
call for transformations in agricultural management reaches a

watershed moment, in order to achieve SDG targets of Zero
Hunger via resilient agriculture practices, these efforts will not
only enhance multiple ecosystem services in organic agriculture,
but also amplify the success of ecological nutrient management.
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